
Draf
t

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

The Changing Nature of Computational Science Software
Huy Tu, Rishabh Agrawal, Tim Menzies

Computer Science, NC State, USA
hqtu@ncsu.edu,ragrawa3@ncsu.edu,timm@ieee.org

ABSTRACT
Recently, the use of software-based Comptuational Science for sci-
entific discovery has increased. How should SE adapted for Com-
putational Science? To answer that question, we need to understand
more about the nature of Comptuational Science software.

A recent trend in that community is that, increasingly, those codes
are being stored in pubic domain repositories such as Github. Hence,
it is now possible to explore the nature of Computational Science
projects using that public domain data. Accordingly this paper we
seek quantitative evidence (from dozens of Comptutational Science
projects housed in Github) for 13 previously published conjectures
about scientific software development in the literature. In all, we
explore three groups of beliefs about (1) the nature of scientific
challenges; (2) the implications of limitations of computer hardware;
and (3) the cultural environment of scientific software development.
We find that four cannot be assessed with respect to the Github data.
Of the others, only three can be endorsed.

Our conclusion will be that the nature of Computational Science
software development is changing. Hence the tools we should de-
velop to support software-based-science, needs to change as well.

KEYWORDS
Computational Science, Software Engineering
ACM Reference Format:
Huy Tu, Rishabh Agrawal, Tim Menzies. 2020. The Changing Nature of
Computational Science Software. In Proceedings of The 28th ACM Joint
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2020). ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Computational Science (hereafter, CS) uses software to explore as-
tronomy, astrophysics, chemistry, weather Modeling Assumptions,
economics, genomics, molecular biology, oceanography, physics,
political science, and many engineering fields Computational Sci-
ence (hereafter, CS) is becoming more dependent on software. For
example, in 2013 a Nobel Prize went to chemists using computer
models to explore chemical reactions during photosynthesis. In the
press release of the award, the Nobel Prize committee wrote:

Today the computer is just as important a tool for
chemists as the test tube.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

If we can better understand the nature of the software development
practices in CS then we would be (1) better able to improve those
methods; and (2) alleviate some of the effort involved in sustain-
ability, verifiability, reproducability, understanding, and utilization
of that software. Improving (say) the maintainability of CS code is
desirable since this would improve:
• The adaptation of scientific projects simulations to new and effi-

cient hardware (multi-core and heterogeneous systems);
• The ability for larger teams to co-ordinate (through integration

with interdisciplinary teams);
• Howe well we can model complex phenomena.

Note that we are not the first to stress the need for better SE for CS.
The quality of scientific software through the “Climategate” scandal
[23] uncovered a lack reproducibility of CS results. Improving the
verifiability of CS code would hence increase the credibility of
results from CS research.

Table 1 lists some of the prior results where empirical software
engineering researchers have explored computational science (this
table comes from the work of Carver, Heaton, Basili, and Johanson
[3, 6, 8, 13, 16], and others). Johanson et al. [16] argues that SE
practices will only be integrated into CS if the honor the 13 beliefs
listed in Table 1.

Given the importance of CS and prominence of the beliefs of
Table 1, we assert that it is wise to test those beliefs. A recent trend
is that CS researchers store their code on opens source repositories
(such as Github). This paper mines the code and comments of dozens
of those repositories, to assess the current relevance of the Table 1
beliefs. For each such belief:
• We predict what would be observable (if the belief was true).
• We endorse/doubt that belief if that observation is present/absent

within the Github CS repositories.
An important part of this analysis is that all our reasoning is repeat-
able/ refutable/ improvable. One issue with much of the analysis
of Table 1 is that that analysis is often applied to just a handful of
projects (or even, just one) and is often qualitative in nature. Hence,
that prior work does not lend itself to being double-checked by sub-
sequent studies that survey numerous projects. Our results, on the
other hand, scales to multiple projects and can be tested by anyone
with access to Github.

In summary, based on on analysis of 59 CS projects, we find that:
• Four of the beliefs cannot be assessed using Github data.
• Of the other beliefs, we find we can endorse three of them.
• But we must doubt six of them.

This is not to say that six of the beliefs of Table 1 are wrong. Rather
we would say that the nature of computational science is something
that is ever evolving and that old beliefs needs to be rechecked when-
ever new data is available. The nature of CS software development is
changing. Hence we should also evolve the tools we use to support
software-based-science.

1

Draf
t

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Huy Tu, Rishabh Agrawal, Tim Menzies

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Category Characteristics Citations Conclusion
1. nature of
scientific
challenge

a) Requirements are Not Known up Front
b) Verification and Validation are Difficult and Strictly Scientific
c) Overly Formal Software Processes Restrict Research

[3, 8, 10, 30, 33] Endorse
[3, 7, 8, 19, 25] Doubt
[8, 10, 31, 33] No-Evidence

2. limitations
of computer

hardware

a) Development is Driven and Limited by Hardware
b) Use of “Old” Programming Languages and Technologies
c) Intermingling of Domain Logic and Implementation Details
d) Conflicting Software Quality Requirements

[10, 36] No Evidence
[3, 8, 14, 25, 26] Doubt
[36] Endorse
[3, 7, 8] No Evidence

3. limitations
of cultural
differences

a) Few Scientists are Trained in Software Engineering
b) Different Terminology
c) Scientific Software in Itself has No Value But Still It is Long-Lived
d) Creating a Shared Understanding of a “Code” is Difficult
e) Little Code Reuse
f) Disregard of Most Modern Software Engineering Methods

[3, 6, 10, 28, 32] Doubt
[10, 21, 36] Endorse
[10, 21, 32, 36] Doubt
[7, 15, 28, 31] Doubt
[3, 7, 25, 31] No Evidence
[6, 7, 12, 21, 25] Doubt

Table 1: Thirteen beliefs from prior studies about Computational Science. From Johanson et al. [16]. These beliefs divide into the
three categories shown in the left-hand column. In the far right column, anything marked as “no evidence” refers to beliefs we could
not check using our Githun data.

2 PRELIMINARIES
2.1 Why Study CS (Computational Science)?
There are good reasons for the growing dependency of science on
computational methods software, not the least of which is that it is
faster, cheaper, and safer to explored software models than actually
explore the physical effects they represent: For example, CS software
can explore thousands of hurricanes scenarios without risk to human
life or property.

We assert that it is important to study CS software since that
software has a widespread social impact. For example:

• Weather forecasts generated from CS software can predict the
path of hurricanes. This, in turn, allows (e.g.) effected home
owners to better protect themselves from damaging winds.

• CS explores the properties of new materials. Synthesizing new
materials is very expensive so standard practice is to use software
to determine those properties (e.g. via a finite element analysis).
This, in turn, enables (e.g.) the faster transition of new materials
to industry.

• Moreover, more quality software would guarantee the CS work
more credible and more reproducible. Therefore, better SE im-
proves computational science software, which would lead to bet-
ter (e.g.) weather Modeling Assumptionss and the faster creation
of new industries based on new materials.

2.2 Data Collection
To check our beliefs on CS projects, we proceeded as follows. Using
our contacts in the CS community (from the Molecular Sciences
Software Institute (MOLSSI), and the Science Gateways Commu-
nity institute (SGCI)) we found 678 CS projects. Researchers warn
against using all the Github data [1, 4, 18, 24] since many of these
projects are simple one-person prototypes. Following their advice,
we applied the sanity checks of Table 3 to select 59 projects with
sufficient software development information (listed in Table 2).

Figure 4 summarizes the projects that past our sanity checks.

2.3 Labelling
When code is share within a software repository, an important event
is the commit comments. These comments are all the remarks devel-
opers make to document and justify some update to the code. Code
repository systems such as Github store tens of millions of such
comments. These remarks are a rich source of information about a
project.

In order to understand scientific development process, we man-
ually categorised the commit comments seen within CS software.
Using the power of free pizza, we assembled a team of 10 com-
puter science graduate students That team spent 320 hours (in total)
categorizing the commit comments from the projects of Table ??.

In order to allow other researchers to reproduce this work, we
set the following a resource limit on this analysis. According to
Tu et al. [35], two humans can manyally read and categorize and
cross-check 400 commit comments per day (on average). Hence,
for this study, for each each project, we categorized 400 commits
(selected at random) from each project.

Our population of reviewers labelled commits using the following
guidelines:
• Science enhancement: any core science (e.g. an equation of Pascal

triangle) that is being implemented or modified.
• Engineering enhancement: any other enhancements that related

to code complexity (e.g. data structures, data types, input/output,
etc)

• Bug fixes: Fixing software faults reported or found within the
development.

• Testing: evaluate the functionality of a software application (e.g.
scientific calculations to output/input formats).

• Other: not core changes, e.g. renaming or formatting changes
Each commit was labelled by two reviewers, neither of which had
access to the other’s labels. Moreover, the reviewers not only looking
at the commit message but also the code contribution associated with
the commit (e.g. to determine if the nature of some enhancement was
“scientific” or “engineering” in nature). The level of labelling dis-
agreement was low (just 19%). When labels disagreed, the commit
was given to our most experienced reviewer who made an executive
decision about what was the correct label.

2

Draf
t

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Changing Nature of CS Software ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 2: CS projects that satisfy the sanity checks of Table 3. This list has been auditted by a domain expert from CS (Dr Robert
Sinkovits, San Diego SuperComputer Center (https://www.sdsc.edu/ sinkovit/)) who commented that many of these projects account
for the majority of the supercomputer usage in computational science. While some of these focus on computational chemistry, they
also include numerous widely-used support tools (e.g elasticsearch) or simulation tools that are cross-disciplinary (e.g. the classical
simulation tools used by molecular biologists). Also, there are also tools here used in material science (e.g. LAMMPS).

Analyzed
Language # Developers Duration(Years) # Commits # Stars # Issues # Releases in Figure 2

BLIS C 20 4.8 1242 413 142 25
cctools C 43 5.5 8881 72 666 159

keplerproject C 22 5.25 329 26 66 18
AMBER C++ 12 4 8382 32 249 3 X

changa C++ 19 3.5 1458 13 16 8
cyclus C++ 20 6.5 6579 36 625 47
dealii C++ 120 18 41514 382 1604 26

GooFit C++ 12 5.5 1508 57 50 12
HooMD-blue C++ 36 2.5 9450 54 330 25 X

irods C++ 36 5 6267 236 3820 34
LAMMPS C++ 74 5.13 15814 383 294 91 X
LIBMESH C++ 55 6 17133 247 449 59 X

MADNESS C++ 31 4.5 5193 71 184 3
metpy C++ 34 7.75 2199 332 481 20

OpenMm C++ 38 7 5838 324 959 22
OpenMX C++ 11 5 6993 26 79 62

PCMSolver C++ 8 4 1844 13 88 16 X
PLUMED C++ 23 5.5 8075 92 282 35

Psi4 C++ 79 5.5 12178 247 504 7
SCIRun C++ 18 6.5 8887 45 1487 79

TRILINOS C++ 179 3 79520 310 2063 141
ABINIT Fortran 23 2.3 6793 53 13 96 X

OpenMolcas Fortran 29 1 565 29 52 2
MPQC C++, Fortran 12 5 6362 28 44 57

NWChem Fortran 29 1 26013 70 33 5
OpenMPI C, Fortran 147 4 28680 627 1424 99

quantum_package Fortran 11 4.5 2721 18 92 5
elasticsearch Java 1103 8.5 42349 37757 16918 223
learnsphere Java 9 2.5 646 11 34 1

orca Java 11 3.5 1103 1 143 19
trellis Java 3 2 892 26 171 10

Xenon Java 11 9 2315 15 378 21 X
abaco Python 8 3.5 1112 13 29 7
APBS Python 19 5 6642 67 501 8

forcebalance Python 10 5 1562 48 47 6
foyer Python 10 3.5 343 19 66 8

hydroshare Python 30 4 9387 63 1708 55
Luigi Python 35 6 3628 10348 628 37
mast Python 22 5.5 5050 8 471 69

MDAnalysis Python 76 3.5 5120 233 1087 46 X
mdtraj Python 45 6 2971 189 682 21

openforcefield Python 8 1 1360 37 70 5
openmmtools Python 10 4 1156 40 154 31

parsl Python 11 2 1268 63 258 15
pymatgen Python 107 7 14989 322 359 228

pyscf Python 36 4.5 4666 217 101 41
radical-pilot Python 17 5 56900 26 1269 137

RMG-Py Python 43 1 7548 112 678 17 X
signac Python 8 2 5000 8 89 5

signac-flow Python 8 2 1000 5 28 3
TauDEM Python 11 5.5 298 102 132 10

Use Galaxy Python 188 3.5 36005 507 2269 51
yank Python 8 5 2728 41 557 34

yt Python 93 1.5 23923 138 1216 37
3

Draf
t

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Huy Tu, Rishabh Agrawal, Tim Menzies

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 3: Sanity checks (designed using [17])

Check Condition
Personal purpose (# Developers) � 7

Collaboration (Pull requests) > 0
Issues > 10

Releases > 1
Commits > 20
Duration > 1 year

Table 4: Labels of development types, generated via manual
cross-inspection on 1000 random bug-fixing commits.

Absolute Percentage
Bug Fixes 113 11%
Scientific Enhancement 370 37%
Engineering Enhancement 281 28%
Testing 113 11%
Other 132 13%

2.4 Terminology
The sanity checks of Table 3 uses the following terms:
• Commit: in version control systems, a commit adds the latest

changes to [part of] the source code to the repository, making
these changes part of the head revision of the repository.

• Release: (based on Git tags) mark a specific point in the repos-
itory’s history. Number of releases defines different versions
published, which signifies considerable amount of changes done
between each version.

• Duration: length of project from its inception to current date
or project archive date. It signifies how long a project has been
running and in active development phase.

Later in this paper, we will also use these additional terms:
• Open & Closed Issues: Users and developers of a repository on

Github use issues as a place to track ideas, enhancements, tasks,
or bugs for work.

• Tags: Thees are references that point to specific points in the
Git version control history. Tagging is generally used to capture
a point in history that is used for a marked version release (i.e.
v1.0.1).

• Stars: signifies how many people “liked” a project enough to
create a bookmarks to follow the future progress of that project.

• Developers: These are the contributors to a project, who work on
some code, and submit the code using commit to the codebase.
The number of developers signifies the interest of developers in
actively participating in the project and volume of the work.

• Watchers: Thse are GitHub users who have asked to be notified
of activity in a repository, but have not become collaborators.
This is a representative of people actively monitoring projects,
because of possible interest or dependency.

• Forks: A fork is a copy of a repository. Forking a repository
allows user to freely experiment with changes without affecting
the original project. This number is an indicator of how many

people are interested in the repository and actively thinking of
modification of the original version.

• Heroes: This is term used widely in the literature [1, 11, 27, 34]
to denote those programmers within a project that do most of the
work1. The usual definition of “heroes” are the 20% of developers
who write more than X% of the code. The usual threshold for
“X” is X � 80% [27] but recently Majumder et al. [22] found that
such heroes are so common in open source projects that we will
use their threshold of X � 95%.

2.5 “Endorse” and “Doubt”, but not “Reject”
Using the above definitions, the rest of this paper makes the follow-
ing conclusions about the beliefs of Table 1

In this paper, we “endorse” or “doubt” a belief (and we never say
that a belief is “rejected”). This section explains why we that is so.

The reasoning of this paper makes modeling assumptions in order
to bridge between the terminology of the belief and the terms in the
Github data. For example, consider the belief “Verification and vali-
dation in software development for CS is difficult”. None of our data
is conveniently labelled with the tag “verification and validation”.
Instead, based on our reading of the commits, we could assign labels
showing whether or not developers where fixing existing bugs or
reporting the results of running tests. Hence, to explore that belief we
had to make the following modeling assumptions to bridge between
the terminology of the belief and the terms in the Github data.

• V&V is associated with testing and and bug fixing;
• The amount of testing and bug fixing is an indicator for the

amount of V&V activity.

Formally, this means that our conclusions are based on what Schouten
et al.describe as indicators [29] rather than direct measures. Indicator-
based reasoning if often required in large scale data collection, es-
pecially when the goals being pursued are not directly measured.
For example, in the software engineering literature, Mylopoulos
et al. [2] relied on such indicators for their work on business in-
telligence. More generally, in the business management literature,
there is much agreement that some strategy is required to bridge
between the goals of the investigation and what is observable in the
data. For example, in the original paper on balanced score cards
(which, at the time of this writing, has over 9800 citations in Google
Scholr [20]), Kaplan and Norton offer a four-layer “perspectives
diagram” that implements the bridge from high-level business goals
down to observable entities.

Due to the approximate nature of these indicators, it can be inap-
propriate to report results using specificity of a statistical hypothesis
test. Hence, in this paper:

• We only offer conclusions when we can find large differences
between different sets of observations.

• We eschew the term “reject”, preferring instead to say “endorse”
or “doubt”.

1See [9] for a critical review of this particular term. While we agree with those criticisms,
the term is highly prevalent in the literature. Hence, reluctantly, we use the term “hero”.

4

Draf
t

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Changing Nature of CS Software ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3 BELIEFS WE CANNOT EXPLORE (USING
GITHUB DATA)

Github stores data about code and the comments seen during code
reviews and pull requests. While this is useful for assessing most of
the beliefs of Table 1, it does mean that at least three of the thirteen
beliefs, summarized by Johanson et al. [16], cannot be explored by
this paper:

• Overly Formal Software Processes Restrict Research: Compu-
tational scientists perform many tasks, only one of which is
developing software. For example, they must write grants, do pre-
sentations, traveling, keeping up with the fast-developing fields,
etc. Hence, measuring (1) the formality of software process and
(2) research efforts would be outside of the scope for Github.

• Development is Driven and Limited by Hardware: We found it
hard to access information about hardware platforms from our
Github data. Hence, we cannot reason about this belief.

• Conflicting Software Quality Requirements: As with issues relat-
ing to hardware, we found it hard to extract from our Github data
information about competing requirements such as functional
correctness vs performance or portability or maintainability. Note
that performance issues conflict with portability and maintainabil-
ity since these are often achieved via hardware-specific optimiza-
tions. As before, we found it hard to access Github information
about these kinds of requirements decisions.

4 BELIEFS ABOUT THE NATURE OF THE
SCIENTIFIC CHALLENGE

All characteristics of software development in computational science
that are listed in this section result from the fact that scientific soft-
ware is an integral part of a discovery process. When you develop
software to explore previously unknown phenomena, it is hard to
specify exactly up front what the software is required to do, how
its output is supposed to look like, and how to proceed during its
development.

4.1 Requirements
Our analysis of this first belief will conclude that CS code is build in
an exploratory manner, rather than in response to some pre-defined
requirements. While this first conclusion is hardly surprising, it is
does offer a simple example of how this paper uses Github data to
reason about CS projects.
Belief: Project requirements are not known up front [3, 8, 10, 30,
33].
Rationale: Many authors, including Carver [8] and Easterbrook [10]
comment that CS code is not written in order to satisfy some pre-
existing set of requirements. Rather, it is written an exploratory
fashion in order to better understand some effect. This would make
CS software very different to code developed using (e.g.) a waterfall
model where the requirements are all known at the start of the
development.

If CS software was written in response to some pre-existing set
of requirements, then we would expect to see bug-fixing and testing
to be a predominately end-stage activity. However, as seen here,
enhancements, bug-fixing and testig all occor at vert similary (and
near constant)

Figure 1: BELIEF1 RESULTS: Median percent of total com-
mits seen at 10,20,30,..100% of the time these projects were doc-
umented in Github. Data from the 59 projects of Table 2. Note
that all commit types occur at a similar, and near constant, rate,
across the lifetime of a project.

Modeling Assumptions: Projects with pre-existing list of fixed re-
quirements can be developed in a “waterfall” style where require-
ments is followed by analysis, design, code, implementation and test.
The observable feature of such projects is that most of the testing and
bug fixing activity occurs after the a code base has been enhanced
with the required scientific or engineering functionality.
Prediction: Under these assumptions, if we trace the kinds of com-
mits seen across the lifetime of a project, we should see:
• Early in the project’s lifetime, far more enhancements than bug-

fixing and testing commits;
• Later in the project’s lifetime, far more testing and bug fixing

commits than enhancements.
Result: As shown in Figure 1, the rate of commits of different types
is nearly constant across the project lifetime.
Conclusion: We endorse the belief that, in CS, project requirements
are usually not pre-defined at the start of a project.

4.2 Verification and validation

Belief: Verification and validation in software development for CS
is difficult and strictly scientific [3, 7, 8, 19, 25].
Rationale: According to Carver et al. [8], CS verification means
ensuring the mathematical model matches the real world; while CS
validation means ensure the computational model matches the math-
ematical model Past studies argued that verification and validation
of scientific software should be difficult for several reasons:
• Lack of suitable test oracles [19],
• Complex distributed hardware environments with no comparable

software [3],
• Scientists often suspect that the problems of the software is the

results of their scientific theory [36],
• Lack of physical experimentation and experimental validation is

impractical [8].
Modeling Assumptions: See above, in §2.5

5

Draf
t

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Huy Tu, Rishabh Agrawal, Tim Menzies

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 2: Distribution of development activities within CS (left)
and SE (right) projects within our sample.

Table 5: Labels of testing type commits from the labeled Testing
commits.

Absolute Percentage
Science 29 45%
Engineering 11 17%
Other 25 38%

Prediction: Verification and validation in CS “difficult” if the ob-
served CS effort in this area is much larger than some known base-
line. As to “strictly scientific”, we should see far more “scientific
enhancements” that otherwise (e.g. “bug fixes” plus “engineering
enhancement”).
Result: It is easy to show that CS software verification and validation
is heavily focused on scientific issues . Table 5 shows that “scientific
testing” is the largest type of commit in our labeled Testing commits
sample (at 45%). Far less effort is spend on “engineering testing”
(only 17%).

As to showing the CS verification and validation is “more diffi-
cult”, the Table 4 should be compared to Figure 2, which shows the
85% percent of commits in standard SE projects associated with bug
fixes and enhancements. This data comes from a recent study of the
top-20 highly starred from Github that satisfy our sanity checks of
Table 3 2. Since 85% is much larger than 22%, we conclude that,
for verification and validation, far less effort is being spent in CS
projects than SE.
Conclusion: We endorse the belief that CS V&V is mostly concerned
with scientific issues. But since CS V&V requires fewer commits
that SE projects, we cannot endorse a belief that verification and
validation in software development for CSis more difficult than in
other disciplines.
Discussion: This result is somewhat strange since it runs counter to
standard beliefs in the SE literature (e.g. Brookes argues that unit
tests and systems tests will consume half the time of any project [5]).
We conjecture that the larger V&V effort in SE is due to the nature of
CS problems. CS software is more grounded in unchanging physical
realities that standard SE software:
• CS software is written to correspond to physical phenomena, the

nature of which may never change (e.g. the atomic weight of
iron).

2TBD:need more data. 20 se projects

Table 6: Language Usage within sample of quality CS projects.

Absolute Count Percentage
Other 1 1%
Javascript 2 3%
C 4 7%
Java 5 9%
Fortran 8 14%
C++ 16 27%
Python 23 39%

• On the other hand, standard SE software (e.g. the highly starred
projects in Github) is written to correspond to an ever-changing
ecology of platforms, tools, user expectations, and newly-arrive
AI algorithms, etc etc. Hence, it is not surprising SE software
requires more verification and validation effort than CS software
since the problem it addresses are more dynamic.

Whatever the reason, note that this result calls for a different kind
of testing device in CS. In standard SE, a “test” can be something as
simple as a unit test (checking if, for example, that subtrees remain
in sorted order after insertion). But in CS, “tests” need to be a higher
level and refer back to some core physical properties as defined by
scientific theory.

5 LIMITATIONS OF COMPUTER HARDWARE
In this section, we discuss characteristics of software development in
computational science that are due to limitations regarding available
computing resources and their efficient programming.

5.1 2b. Programming Languages, Technologies,
and SE Methods

In this section we explore a combination of beliefs 2b and 3f. Belief:
A widespread view is that computational scientists prefer “older”-
style programming languages and technologies while disregarding
most of the newer SE methods [3, 8, 14, 25, 26].
Rationale: CS Scientists are skeptical of modern SE methods and
new technologies/languages. Given their success with older-style
languages (Fortran and C). This is based on several factors:

• A decades-long commitment with these older-style languages on
high-performance computing platforms [36].

• A belief that the extra features of the newer languages needlessly
conflate functionality that can be more easily implemented in
(e.g.) one line of “C” macros [28].

• A prejudice against the never languages or a perception that the
scientists would not find then useful [25].

Modeling Assumptions:

• Old languages/technologies: based on the literature review of
Johanson et al. [16], we say that “C” and “Fortran” are the older,
most established languages in the CS community. Everything
else, we will call “newer languages”.

• Modern SE practices are associated with automating tests and
deployment continuously (e.g. Travis CI)

6

Draf
t

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Changing Nature of CS Software ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

In order to assess this combined belief (2b and 3f), the usage of
language per project within the sample (Table 6) is recorded along
with the usage of Travis CI.
Prediction: We would endorse this belief if (1) most the languages
used by the CS projects are “older” style and (2) most CS projects
do not adopt the usage of Travis CI.
Result: “C” and “Fortran” are just 29% of our sample while most
of our projects use “newer” languages (where “new” is defined by
Johanson et al. [16]).

We have other evidence that CS developers might be more open
to newer technologies than suggested in the current literature. In
looking over our 59 projects, we observe that 43 of them (73%) have
active Travis CI connections3. Travis CI is a continuous deployment
tool that run tests as a side-effect of any commit being written
to Github. It is a standard tool within the continuous deployment
community.
Conclusion: We do not support a belief that CS Scientists are skepti-
cal of modern SE methods and new technologies/languages.
Discussion: While this result is at odds with numerous papers [3,
8, 14, 25, 26]. We explain our novel findings as follows. Most of
the papers that endorse this view come from before the recent Sili-
con Valley boom. In our discussions with postdocs working on CS
projects, we noted that they were very aware of the salaries they
might earn if, after completing their postdoc, they moved on to soft-
ware companies. They seemed very well aware that a condition of
that career move would be a deep understanding of the kinds of
tools used by contemporary agile software companies. Hence, it is
perhaps not so surprising that we report here a widespread use of
modern software techniques in CS.

5.2 2c. Domain Logic and Implementation Details

Belief: Intermingling culture of domain logic and implementation
details within scientific software development [36].
Rationale: Scientific software development is different from tradi-
tional software development due to the inseparable relationship of
the usage of older programming languages and software with the
focus of scientific models performance. The developers of such soft-
ware should be, but difficult to be, proficient in both aspects. This
leads to researchers having difficulty in evolve one aspect indepen-
dently.
Modeling Assumptions: During scientific software development,
• domain logic addresses computational understanding, i.e. scien-

tific enhancement.
• implementation details address coding/building the tool up to

solve scientific problem, i.e. engineering enhancement.
Prediction: If domain logic and implementation details are intermin-
gled/inseparable during the development, then both scientific and
engineering enhancement contribution distribution should be the
same or have a very small difference from each other.
Result: Across the enhancement type commits from the sample
(from Table 4), 370 or 57% enhancement commits focusing on the
core science while the rest of 281 or 43% enhancement commits
focusing on the quality of the code. The absolute difference between
two type of enhancement activities is small (14%)

3check that their travis CI accounts are active

Figure 3: The SE (cyan) and Computational Science (magenta)
projects count number of before and after sanity checks.

Conclusion: the small difference indicated our endorsement for this
characteristic that developers of scientific software spent their time
and efforts to enhance both the core science and the code evenly in
parallel.

6 CULTURAL ENVIRONMENT OF
SCIENTIFIC SOFTWARE DEVELOPMENT

The characteristics that are listed in this section result from the
cultural environment in which scientific software development takes
place. This environment is shaped, for example, by the training
of computational scientists and the funding schemes of scientific
research projects.

6.1 SE Training

Belief: Few computational scientists are trained in SE [3, 6, 10, 28,
32].
Rationale: Not many of scientists have SE knowledge or skill due
to (1) SE are only considered as “techniques”, a means to an end
during the development of scientific software [28] and (2) learning
SE is perceived as an excessive demand [21].
Modeling Assumptions: training in SE is indicated by

• the general quality of the software (e.g. the amount of projects
that pass the sanity checks)

• the adoption of SE practices (e.g. the
Result: In order to assess this belief, we first checked the number of
projects between SE and Computational Science community after the
sanity checks (from Table 3 and mentioned in §2.1) to make sure that
they are more than just “hobby” projects as Figure 3 showed. We can
see that after the sanity checks, the proportion of quality projects that
are in CS community is 486 times higher than the quality projects
that are in SE community (the calculation justification is offered
right below). In another word, CS developers are more serious about
their software development.

CS_post_pre_sanit�_rate
SE_post_pre_sanit�_rate =

CS_post_sanit�
CS_pre_sanit�
SE_post_sanit�
SE_post_sanit�

=

58
678

10,000
57⇤106

= 486

Furthermore, we summarized the the Github statistics of 1,000+
projects within the “Github showcase project” as SE projects and
59 quality CS projects in Figure 4. Beside the Developer statistics,

7

Draf
t

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Huy Tu, Rishabh Agrawal, Tim Menzies

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 4: Github statistics comparison of 1,000+ SE projects (Cyan) & 59 CS projects (Magenta).

Table 7: Win percentages of G-score (left) and Popt 20 (right)
from [35]. Gray cells highlight the labeling method that were
top-ranked most in that project by the statistical tests (in
P(W /N) format). Treatments: SE method (SE) and tuned SE
method for CS (CS)

% G-score Wins
Dataset SE CS

PCMSOLVER 100 (1/1) 0 (0/1)
AMBER 67 (2/3) 33 (1/3)
HOOMD 40 (2/5) 60 (3/5)
RMG-PY 40 (2/5) 60 (3/5)

ABINIT 25 (2/8) 63 (5/8)
LIBMESH 28 (2/7) 72 (5/7)

MDANALYSIS 28 (2/7) 72 (5/7)
LAMMPS 25 (2/8) 75 (6/8)

XENON 17 (1/6) 83 (5/6)

% Popt 20 Wins
Dataset SE CS

PCMSOLVER 100 (1/1) 0 (0/1)
XENON 50 (3/6) 50 (3/6)

MDANALYSIS 43 (3/7) 57 (4/7)
LIBMESH 14 (1/7) 57 (4/7)

HOOMD 40 (2/5) 60 (3/5)
LAMMPS 25 (2/8) 63 (5/8)

ABINIT 25 (2/8) 63 (5/8)
AMBER 33 (1/3) 67 (2/3)

RMG-PY 0 (0/5) 80 (4/5)

it is observed that they commited, closed issues, deployed/released,
and tagged more while the projects are shorter in duration. Scientific
developers develop with SE process philosophies: build software
faster and in a more granular fashion than SE projects.
Conclusion: With both of these evidences, we doubt this belief that
few computational scientists are trained in SE as scientific developers
(1) are more serious in developing their software and (2) built their
software faster in a more granular fashion.

6.2 Terminology

Belief: Both SE and CS fields used different terminologies (or even
languages) to describe the the things they do, sometimes, the same
activity [10, 21, 36].
Rationale: SE and CS fields have developed in isolation with estab-
lished distinct languages. As a result, the scientific programmers

might have not realized they have re-invented or used existing SE
techniques.
Modeling Assumptions:

• Terminologies are regarded here as how scientists describe their
work in the commits documentation.

• The difference between using off-the-shelf SE method versus
tuned method that learn the CS language to label CS commits is
the indicator.

Prediction: If the belief is hold, then the off-the-shelf SE method
will perform badly when labeling scientific development commits in
comparison with with tuned method that learn the CS language.
Result: Tu et al. [35] demonstrated that SE and CS used different
languages in development documentation as different backgrounds
come different terminologies and the language usage. They noted
that the difference is so large that SE method for identifying bug-
fixing commits cannot be adapted without prior modified to CS
community. Comparing to human, after tuning the SE method to
learn the CS language, they were able to reproduce better ground
truths than SE method. That better ground truths generated more
quality prediction for defect predictors. Specifically, Table 7 com-
pares predictive performance using CS method (tuned SE method
to learn the CS language) and standard SE method. The treatments
with more superior performance are denoted by gray color. Note
that, in the majority case 7 out of 9 projects for both G-score and
Popt 20.
Conclusion: With this empirical study’s straightforward result, we
can confidently endorse that the computational science community
utilize a different language when describing and documenting their
work.
Discussion: Further, this result also raises attention for the current
bad research fashion of reusing and applying established work with-
out critiques. As seen, off-the-shell SE standard methods did not
apply well for CS development data. The methods need to tuned to
specialize how scientific researchers develop their software.

8

Draf
t

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Changing Nature of CS Software ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 5: Defect Introduction rate by hero and non-hero devel-
opers within SE projects (left) and CS projects (right).

Table 8: The table summarizes of Figure 5 and stratifies the data
according to 25th, 50th, and 75th percentiles of buggy percent-
ages introduced through code interaction.

Category
CS Projects SE Projects

Percentile Hero Non-Hero Ratio Hero Non-Hero Ratio
25th 52 67 1.3 46 50 1.09
50th 58 75 1.3 39 43 1.1
75th 53 100 1.9 52 60 1.15

6.3 Value

Belief: Scientific software in itself has no value but still it is long-
lived [10, 21, 32, 36].
Rationale: It is due to the belief that software is a representation of
the underlying scientific theory with no novelty value of for new
scientific discoveries [28].
Modeling Assumptions:

• CS software’s value is associated with the popularity of the
project on Github (open issues, stars, watchers, tags, and forks)

• Live of scientific software is associated with the Duration of the
software on Github.

• In both case, the difference of the metric for SE versus CS is the
indicator.

Prediction:
Result: According to the Figure 4, the number of Open & Closed
Issues are higher in Computational Science projects than in SE
projects. The similar distributions of Stars, Forks, and Watchers be-
tween CS and SE projects indicated similar values are placed by the
audiences for both types of software. Meanwhile, the distribution of
Duration demonstrated that even when the scientists believed their
software is long-lived, the actual Duration of their software devel-
opment is observed, on average, to be significantly shorter, almost
75%, of the Duration of the SE software. Similar to 4.3.1, from our
sample, CS projects’ lives are shorter with a greater commit density
than SE projects. It indicates that CS people actually understand their
code and actually offer more relevant contributions to the project’s
development.
Conclusion: From those statistics, they are some clear signals that
we doubted this belief that CS softwares have no value but long-
lived.

6.4 Code Understanding

Belief: Creating a shared understanding of “code” is difficult [7, 15,
28, 31].
Rationale: All scientists typically (1) do not produce documentation
for the software they implement [28, 32] and (2) high personnel
turnover rates in scientific software development [7, 31]. As a result,
it renders such a knowledge and skill transfer problem.
Modeling Assumptions:

• Code understanding here is associated with how experts (heroes)
and novices/outsiders (non-heroes) interacting through the code.

• The defects introduction rate gap between two types of developers
and the difference between the defects introduction rate gap in CS
versus SE community are the indicator for code understanding.

Prediction: If belief is hold, the defects introduction rate of hero
developers would be a lot lower than the defect introduction rate
of non-hero developers and the defects introduction rate gap of
CS community would be the same or wider than the gap of SE
community.
Result: Menzies et al. [22] checked the heroes projects for both
heroes and non-heroes contribution of defects within software devel-
opment. They found that non-heroes introduced 1.3-1.9 times more
bugs (25th-75th percentiles) in those projects. However, when the
study is replicated for CS projects, Figure 5 and Table 8 indicated
that 25th-75th percentile, non-hero developers introduced slightly
higher than the amount of bugs introduced by hero developers (1.09-
1.15 times). While fewer people (heroes) made most of the changes
within the software development, non-experts and novices are able
to contribute to the software development without causing a lot of
bugs (in respect to developer dynamics in SE projects development).
Conclusion: At least, in the aspect of defect, we doubted that shared
understanding of “code” is difficult within the CS community.
Discussion: The even distribution of similar defects indicates that CS
developers understand the project and make more relevant contribu-
tions to the software development. It is a call for the CS community
to organize and encourage more novices and outsiders to contribute
to the scientific software development.

7 THREADS OF VALIDITY
7.1 Construct Validity
Repeat above discussion on indicators.

7.2 Sampling Bias
Like any data mining paper, our work is threatened by sampling
bias; i.e. what holds for the data we studied here may not hold for
other kinds of data. Within the space of one paper, it is hard to avoid
sampling bias. However, what researchers can do is make all their
scripts and data available such that other researchers can test their
conclusions whenever new data becomes available. To that end, we
have made all our scripts and data available at github.com/blinded-
for-reviews/.

7.3 External Validity
Methodology to understand the difference between software develop-
ment domains in SE. Not our final conclusions or definitions, all are

9

Draf
t

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Huy Tu, Rishabh Agrawal, Tim Menzies

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

threatened by external validities but our conclusions are reproducible
and our analysis can be repeated when new data arrives.

8 CONCLUSION
In this paper we seek quantitative evidence (from dozens of CS
projects housed in Github) for 13 previously published conjectures
about scientific software development in the literature [16]. In all,
we explore three groups of beliefs about (1) the nature of scientific
challenges; (2) the implications of limitations of computer hardware;
and (3) the cultural environment of scientific software development.
Of those, we find that four cannot be assessed with respect to the
Github data. Of the remaining, we can only find support for three of
the nine beliefs.

We found that scientific developers are more capable of SE prac-
tices and knowledges than they believed. Because of the understand-
ing/miscommunication gap, they have operated with SE philosophies
unknownly. As the nature of the CS software development is chang-
ing, scientific software developers may not need to incorporate SE
knowledge and practices but they need tuned and specialized SE
methods for CS community. Software engineers can therefore help
scientific software developers to tailor the existing SE practices and
knowledge to better fit the needs of the scientific software develop-
ers.

It leads to a new characterization of the nature of CS software
development which, in turn, suggests a new prioritization for tool
development in this area. Therefore, more research on this topic
is needed, especially to empirically evaluate the actual gains in
productivity and quality achieved for scientific software by such SE
approaches.

9 ACKNOWLEDGMENTS
This work was partially funded by an NSF CISE Grant #1826574
and #1931425.

REFERENCES
[1] A. Agrawal, A. Rahman, R. Krishna, A. Sobran, and T. Menzies. 2018. We don’t

need another hero?: the impact of heroes on software development. In ICSE.
[2] Daniele Barone, Lei Jiang, Daniel Amyot, and John Mylopoulos. 2011. Composite

indicators for business intelligence. In International Conference on Conceptual
Modeling. Springer, 448–458.

[3] V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K. Hollingsworth, F. Shull,
and M. V. Zelkowitz. 2008. Understanding the High-Performance-Computing
Community: A Software Engineer’s Perspective. IEEE Software 25, 4 (July 2008),
29–36. https://doi.org/10.1109/MS.2008.103

[4] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu.
2009. The promises and perils of mining git. In Mining Software Repositories.

[5] Frederick P Brooks Jr. 1995. The mythical man-month (anniversary ed.). (1995).
[6] J. Carver, D. Heaton, L. Hochstein, and R. Bartlett. 2013. Self-Perceptions about

Software Engineering: A Survey of Scientists and Engineers. Computing in
Science Engineering 15, 1 (Jan 2013), 7–11. https://doi.org/10.1109/MCSE.2013.
12

[7] Jeff Carver, Lorin Hochstein, Richard Kendall, Taiga Nakamura, Marvin
Zelkowitz, Victor R Basili, and Douglass Post. 2006. Observations about software
development for high end computing. CT Watch Quarterly 2 (01 2006).

[8] J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post. 2007. Software Devel-
opment Environments for Scientific and Engineering Software: A Series of Case
Studies. In 29th International Conference on Software Engineering (ICSE’07).
550–559. https://doi.org/10.1109/ICSE.2007.77

[9] Thomas Claburn. 2020. Rockstar dev debate reopens: Hero programmers do exist,
do all the work, do chat a lot – and do need love and attention from project leaders.
https://www.theregister.co.uk/2020/01/24/developer_heroes_exist/

[10] S. M. Easterbrook and T. C. Johns. 2009. Engineering the Software for Under-
standing Climate Change. Computing in Science Engineering 11, 6 (Nov 2009),
65–74. https://doi.org/10.1109/MCSE.2009.193

[11] Mathieu Goeminne and Tom Mens. 2011. Evidence for the pareto principle in
open source software activity. In the Joint Porceedings of the 1st International
workshop on Model Driven Software Maintenance and 5th International Workshop
on Software Quality and Maintainability. 74–82.

[12] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson.
2009. How do scientists develop and use scientific software?. In 2009 ICSE
Workshop on Software Engineering for Computational Science and Engineering.
1–8. https://doi.org/10.1109/SECSE.2009.5069155

[13] Dustin Heaton and Jeffrey C. Carver. 2015. Claims about the use of software
engineering practices in science: A systematic literature review. Information and
Software Technology 67 (2015), 207 – 219. https://doi.org/10.1016/j.infsof.2015.
07.011

[14] Michael Heroux, Roscoe Bartlett, Victoria Howle, Robert Hoekstra, Jonathan
Hu, Tamara Kolda, Richard Lehoucq, Katharine Long, Roger Pawlowski, Eric
Phipps, Andrew Salinger, Heidi Thornquist, R. Tuminaro, James Willenbring,
Alan Williams, and Kendall Stanley. 2005. An overview of the Trilinos Project.
ACM Trans. Math. Softw. 31 (09 2005), 397–423. https://doi.org/10.1145/1089014.
1089021

[15] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. Basili, J. K. Hollingsworth, and
M. V. Zelkowitz. 2005. Parallel Programmer Productivity: A Case Study of Novice
Parallel Programmers. In SC ’05: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing. 35–35. https://doi.org/10.1109/SC.2005.53

[16] A. Johanson and W. Hasselbring. 2018. Software Engineering for Computational
Science: Past, Present, Future. Computing in Science Engineering 20, 2 (Mar
2018), 90–109. https://doi.org/10.1109/MCSE.2018.021651343

[17] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. German, and D. Damian.
2014. The Promises and Perils of Mining GitHub. In MSR.

[18] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M German, and D. Damian.
2015. The Promises and Perils of Mining GitHub (Extended Version). EMSE
(2015).

[19] U. Kanewala and J. M. Bieman. 2013. Using machine learning techniques to
detect metamorphic relations for programs without test oracles. In 2013 IEEE
24th International Symposium on Software Reliability Engineering (ISSRE). 1–10.
https://doi.org/10.1109/ISSRE.2013.6698899

[20] Robert S Kaplan and David P Norton. [n. d.]. Using the Balanced Scorecard as a
Strategic Management System. Harvard Business Review (January-Feburary [n.
d.]).

[21] S. Killcoyne and J. Boyle. 2009. Managing Chaos: Lessons Learned Developing
Software in the Life Sciences. Computing in Science Engineering 11, 6 (Nov
2009), 20–29. https://doi.org/10.1109/MCSE.2009.198

[22] Suvodeep Majumder, Joymallya Chakraborty, Amritanshu Agrawal, and Tim
Menzies. 2019. Why Software Projects need Heroes (Lessons Learned from
1100+ Projects). CoRR abs/1904.09954 (2019). arXiv:1904.09954 http://arxiv.
org/abs/1904.09954

[23] Zeeya Merali. 2010. Computational science: Error, why scientific programming
does not compute. Nature 467, 7317 (2010). https://doi.org/10.1038/467775a

[24] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan. 2017. Curating GitHub for
Engineered Software Projects. EMSE (2017).

[25] Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu Huang, Hanjun
Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh, Stephen Beard, Taewook
Oh, Matthew Zoufaly, David Walker, and David I. August. 2011. A Survey
of the Practice of Computational Science. In State of the Practice Reports (SC

’11). ACM, New York, NY, USA, Article 19, 12 pages. https://doi.org/10.1145/
2063348.2063374

[26] M. Ragan-Kelley, F. Perez, B. Granger, T. Kluyver, P. Ivanov, J. Frederic, and M.
Bussonnier. 2014. The Jupyter/IPython architecture: a unified view of computa-
tional research, from interactive exploration to communication and publication..
In AGU Fall Meeting Abstracts, Vol. 2014. Article H44D-07, H44D-07 pages.

[27] Gregorio Robles, Jesus M Gonzalez-Barahona, and Israel Herraiz. 2009. Evolution
of the core team of developers in libre software projects. In Mining Software
Repositories, 2009. MSR’09. 6th IEEE International Working Conference on.
IEEE, 167–170.

[28] Rebecca Sanders and Diane Kelly. 2008. Dealing with Risk in Scientific Software
Development. Software, IEEE 25 (08 2008), 21 – 28. https://doi.org/10.1109/MS.
2008.84

[29] Barry Schouten, Natalie Shlomo, and Chris Skinner. 2010. Indicators for monitor-
ing and improving representativeness of response. (2010).

[30] Judith Segal. 2005. When Software Engineers Met Research Scientists: A Case
Study. Empirical Software Engineering 10, 4 (01 Oct 2005), 517–536. https:
//doi.org/10.1007/s10664-005-3865-y

[31] Judith Segal. 2007. Some Problems of Professional End User Developers. In
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VLHCC ’07). IEEE Computer Society, Washington, DC, USA, 111–
118. https://doi.org/10.1109/VLHCC.2007.50

[32] J. Segal. 2007. Some Problems of Professional End User Developers. In IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2007).
111–118. https://doi.org/10.1109/VLHCC.2007.17

[33] J. Segal and C. Morris. 2008. Developing Scientific Software. IEEE Software 25,
04 (jul 2008), 18–20. https://doi.org/10.1109/MS.2008.8510

Draf
t

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Changing Nature of CS Software ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[34] MR Martinez Torres, SL Toral, M Perales, and F Barrero. 2011. Analysis of the
core team role in open source communities. In Complex, Intelligent and Software
Intensive Systems (CISIS), 2011 International Conference on. IEEE, 109–114.

[35] Huy Tu, Zhe Yu, and Tim Menzies. 2019. Better Data Labelling with EMBLEM
(and how that Impacts Defect Prediction). arXiv:cs.SE/1905.01719

[36] M. L. Vanter, S. Faulk, S. Squires, E. Loh, and L. G. Votta. 2009. Scientific Com-
puting’s Productivity Gridlock: How Software Engineering Can Help. Computing
in Science Engineering 11 (11 2009), 30–39. https://doi.org/10.1109/MCSE.
2009.205

11

